

Science at Exascale and Beyond

Enabling Breakthroughs in Science and Engineering

Katherine Riley Director of Science, Argonne Leadership Computing Facility Sept 28, 2021

DOE SC Advanced Scientific Computing Research User Facilities

The Advanced Scientific Computing Research (ASCR) program leads the nation and the world in supercomputing, high-end computational science, and advanced networking for science.

ALCF and OLCF make up the DOE Leadership Computing Facility

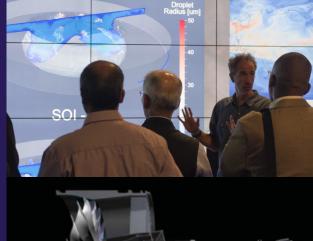
2 Argonne Leadership Computing Facility

Argonne Leadership Computing Facility (ALCF)

Oak Ridge Leadership Computing Facility (OLCF)

National Energy Research Scientific Computing Center (NERSC)

Energy Sciences Network (ESnet)


DOE Leadership Computing Facility

- Established in 2004 as a collaborative, multi-lab initiative funded by DOE's *Advanced Scientific Computing Research* program
- Operates as **one facility** with two centers, at Argonne and at Oak Ridge National Laboratory
- Deploys and operates at least two advanced architectures that are 10-100 times more powerful than systems typically available for open scientific research
- **Fully dedicated** to open science to address the ever-growing needs of the scientific community

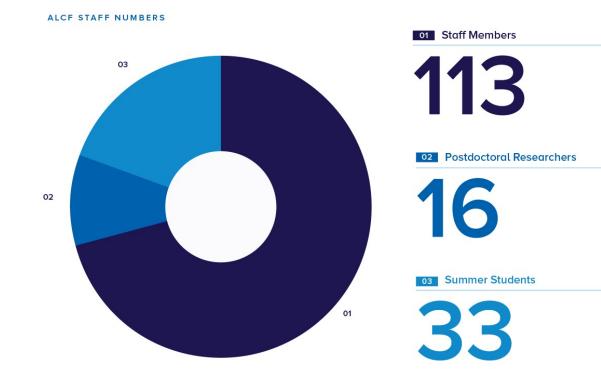
Shaping the Future of Supercomputing

ALCF resources help the research community advance our knowledge of how things work, provide technological solutions to problems, and keep the nation safe and competitive.

Contributions to Science

Economic Benefits

Educational Outreach

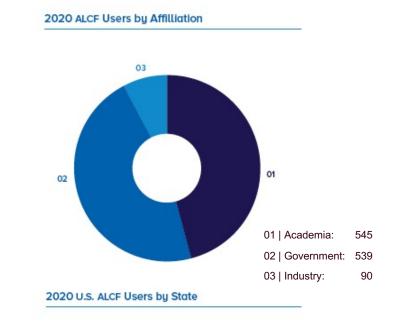

4 Argonne Leadership Computing Facility

Argonne 🔺

ALCF Staff

To ensure facility users are able to get the most out of its supercomputers, the ALCF has assembled an exceptional team of:

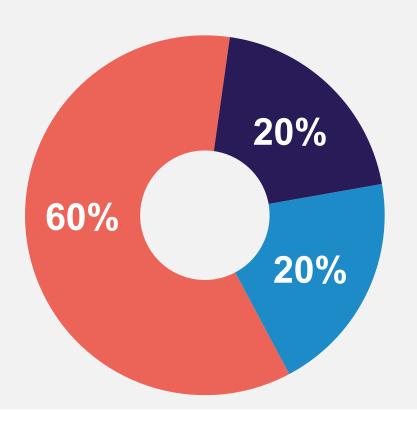
- HPC system and network administrators
- computational scientists,
- computer scientists
- data scientists
- performance engineers
- · visualization experts
- software developers
- user support staff



ALCF at a Glance in 2020

- Users pursue scientific challenges
- In-house experts to help maximize results
- Resources fully dedicated to open science

101M node-hours of compute time
369 active projects
1,174 facility users
246+ publications



7 Argonne Leadership Computing Facility

Argonne

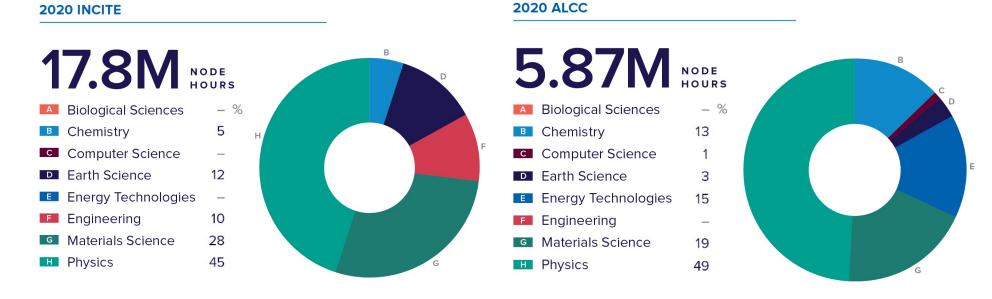
ALCF Allocation Programs

INCITE: Innovative and Novel Computational Impact on Theory and Experiment

- Yearly call with computational readiness and peer reviews
- Open to all domains and user communities

ALCC: ASCR Leadership Computing Challenge

- Yearly call with peer reviews
- Focused on DOE priority


DD: Director's Discretionary Program

- Rapid allocations for project prep and immediate needs
 - Early Science Program (ESP)
 - Exascale Computing Project (ECP)
 - ALCF Data Science Program (ADSP)
 - Proprietary Projects

Accessing ALCF Resources for Science

As a national user facility dedicated to open science, any researcher in the world with a large-scale computing problem can apply for time on ALCF computing resources.

ALCC data are from calendar year 2020.

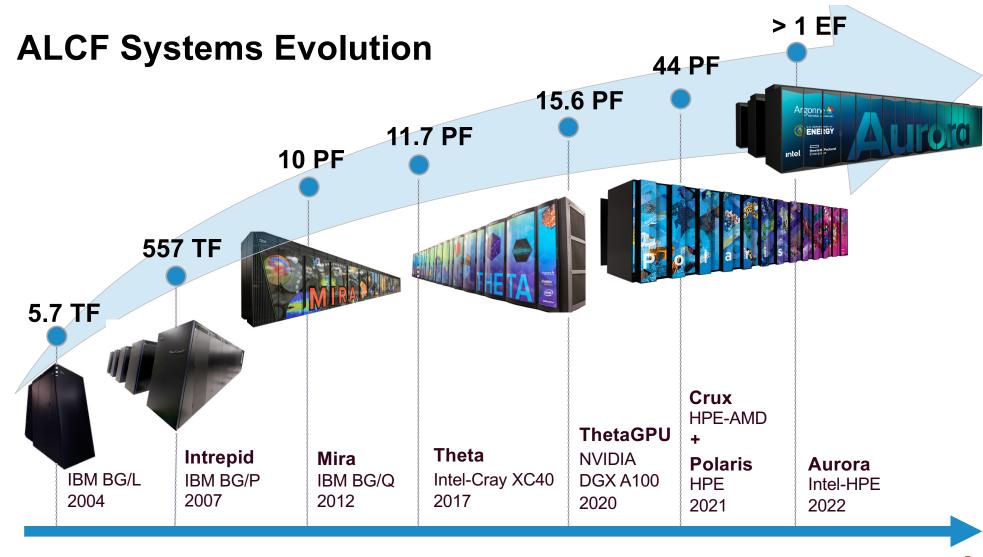
LCF Growth and Impact of the INCITE Program

					~2	X per yea	r			~;	3X per ye	ar				~4X p	ber year
	2004	2005	2006	2007	2008	2009	2010	2011	1 2012	2013	2014	2015	2016	5 201	7 2018	3 2019	2020*
Hours 4	.9M	6.5 M	18.2 M	95 M	268 M	889 M	1.6 B	1.7 E	3 1.7 B	4.7 B	5.8 B	5.8 B	5.8 B	5.8 E	3 5.9 E	8 71 M	38.5 M
Projects	3	3	15	45	55	66	69	57	7 60	61	59	56	56	5	5 55	62	47
Researchers 2D Hubbard presented e predicts HTS <i>Phys. Rev.</i> 2004 20	model a vidence SC beha Lett (20 05 Mode of Pa name acco	the and that it avior. 05) 2006 eling of m arkinson's	disease nputational ent.	orth of darl the first ti appearance structures. ence (200 2008 sis World 21,00 Scient Large comm in an o	k matter, me the ce of dark Nature 09) 2009 's first conti 0 years of E fore (2009) st-ever LES hercial comb existing hel	Unpreceder simulation of magnitude-i earthquake 125-square Proc. SC10 2010 inuous simula Earth's climat of a full-size pustion cham icopter turbin Mecanique	of B over miles. 2011 ation of e history. ed ber used e.	of boun Nature NIST p standar materia concret 20 OMEN using r Proc. 3 New m protein experin	roposes new rod reference alls from LCF e simulations 12 20 I breaks the p more than 220	ture. Recover inactivat potassiu controlle Nature (13 20 etascale bai 0,000 cores.	m channels d by H ₂ O. (2013) 014 20 rrier Ma sup ena le nar Sci	Carbon tribofilm lubricat oils. Na (2016) 15 20 croscale perlubricity abled by gra noscroll forr ience (2015	-based of the second se	2017 Ultra-sele flux mem directly s	of Ove limit le mod n mas stars 2017) (201 2018 2018 ective high branes fro ynthesized anosheets.	ations eling sive s. Nature 8) 2019 - Micro m in-a-o i to he early	Accelerate vaccine and drug identification for COVID- 19. Proc. SC20 2020 Descope- computer lp find cancer. <i>re</i> (2019)

*change allocation unit

Targeted ALCF Programs: ADSP and ESP

- ADSP projects gain insights from massive datasets produced by experimental, simulation, or observational methods.
- Our ESP program helps prepare our nextgeneration supercomputers for production.


ADSP: ALCF Data Science Program

- Award Cycle: October 1 to September 30
- · Award size: millions of compute-hours
- Award duration: 2 years
- ALCF resources: Varies according to project needs

ESP: Early Science Program

- Award Cycle: Determined by production timeline
- Successful program adopted by other leadership facilities.
- Helps bring each new supercomputer into production.
- PI-led projects represent the most challenging applications for a new architecture.

12 Argonne Leadership Computing Facility

Computing Resources

Polaris

- HPE
- AMD processors/NVIDIA GPUs
- 44 petaflops

Theta

- KNL NODES
- Intel-Cray XC4011.69 petaflops
- 4.392 nodes
- 281,088 cores
- 843 TiB of memory

GPU NODES

- NVIDIA DGX A100
- 3.9 petaflops
- AMD EPYC 7742
- 24 nodes 24 TB of DDR4 memory
- 7, 680 GB of GPU memory

Cooley

- Cray/NVIDIA 126 nodes
- 1512 Intel Haswell CPU cores
- 126 NVIDIA Tesla K80 GPUs
- 48 TB RAM / 3 TB GPU

lota

- Intel/Cray XC40 architecture
- 117 teraflops
- 44 nodes
- 2,816 cores
- 12.3 TB of memory

JLSE Experimental Testbeds

- 150 nodes
- Intel/AMD/IBM/Marvell/GPGPU
- EDR/100GbE/OPA
- Lustre/GPFS/DAOS

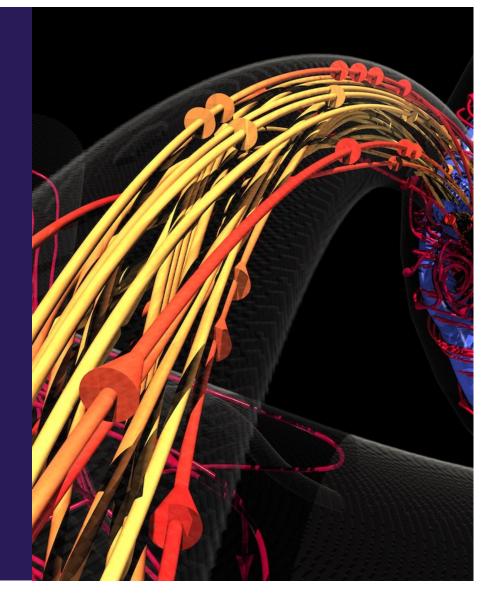
Grand and Eagle (Storage) Each system has:

- HPE ClusterStor E1000
- 100 petabytes of usable capacity
- 8,480 disk drives
- Lustre filesystem
 - 160 Object Storage Targets
 - 40 Metadata Targets
- HDR Infiniband network
- 650 GB/s rate on data transfers

Community Data Sharing with Grand and Eagle

- A global filesystem deployed to bring larger and more capable production-level file sharing to facility users
- A space for broader distribution of reassembled data acquired from various experiments
 - Data originating at the ALCF
 - Greater scientific community
- Science community can access uploaded data, and ALCF users are able to directly access the data for analysis
- Designed to foster experimentation
 - Analysts are able to write new algorithms to attempt analyses that have never been performed

- HPE ClusterStor E1000
- 200 petabytes of usable capacity
- 16,960 disk drives
- Lustre filesystem
- 320 Object Storage Targets
- 80 Metadata Targets
- HDR Infiniband network
- 650 GB/s rate on data transfers
 per filesystem


Charging Ahead: AI Testbed

Advancing science with HPC

- ALCF AI pathfinding effort provides insights on cutting-edge AI technology and how it improves science outcomes
- Evaluates the usability and performance of machine learning-based applications running on these accelerators
 - a deep learning accelerator, reconfigurable dataflow units, intelligent processing unit- (IPU) based systems
- Ongoing work is guiding the facility toward a future marked by extreme heterogeneity in the compute: CPUs, GPUs, AI, and other accelerators

The following testbed hardware is deployed:

- SambaNova
- GraphCore
- Groq

System Configuration	Polaris
# of River Compute Racks	40
# of Apollo Gen10+ Chassis	280
# of Nodes	560
# of AMD EPYC 7532 CPUs	560
# of NVIDIA A100 GPUs	2240
Total GPU HBM2 Memory	87.5 TB
Total CPU DDR4 Memory	280 TB
Total NVMe SSD Capacity	1.75 PB
Interconnect	HPE Slingshot
# of Cassini NICs	1120
# of Rosetta Switches	80
Total Injection BW (w/ Cassini)	28 TB/s
Total GPU DP Tensor Core Flops	44 PF
Total Power	1.8 MW

Single Node Configuration	Polaris
# of AMD EPYC 7532 CPUs	1
# of NVIDIA A100 GPUs	4
Total HBM2 Memory	160 GB
HBM2 Memory BW per GPU	1.6 TB/s
Total DDR4 Memory	512 GB
DDR4 Memory BW	204.8 GB/s
# of NVMe SSDs	2
Total NVMe SSD Capacity	3.2 TB
# of Cassini NICs	2
Total Injection BW (w/ Cassini)	50 GB/s
PCIe Gen4 BW	64 GB/s
NVLink BW	600 GB/s
Total GPU DP Tensor Core Flops	78 TF

Apollo 6500 Gen10+

NVIDIA HGX A100 4-GPU

ALCF Resources - Polaris

Software Overview

- Provides an excellent platform for preparing application codes for Aurora
 - All programming models available on Aurora can be tested
 - Features HPE Cray (PE) Programming Environment
 - Built with HPE HPCM system software
- Provides excellent capabilities in simulation, data and learning using Nvidia's existing HPC SDK
- Support for HPE Cray MPI and MPICH via libfabric using Slingshot provider
 - Initial SS10 feature support
 - later full SS11 feature support for testing all MPI features available on Aurora

Programming Environment

- HPE Cray PE for Polaris
 - HPE Cray MPI support for PGI offload to A100 for Multi-NIC and Multi-GPU support
 - Full Rome and Milan support
- SYCL/Data Parallel C++ provided via
 - CodePlay computecpp compiler with Nvidia support
 - LLVM via Intel DPC++ branch which supports offload to Nvidia GPUs as well as Intel GPUs
- Next NVIDIA HPC SDK will provide primary support for programming A100

	DEVELO	PMENT	ANAL	YSIS	DEPLOYMENT	
Complians	Math Libraries	Communication Libraries	Programming Models	Profilers	Dehugger	Container
	CUBLAS CUTENSOR		Standard C++ & Fortran			
	cuSPARSE cuSOLVER			Systems	Host	HPC Container Maker / NVIDIA Container Runtime
				Compute	Device	

Bridge to Aurora – Bringing Programming Models Together

- Polaris will provide a platform for preparation for Aurora
- Polaris and Aurora will have many similarities at the system and user level

Component	Polaris	Aurora
System Software	НРСМ	HPCM
Programming Models	MPI, OpenMP, DPC++, Kokkos, RAJA, HIP, CUDA, OpenACC	MPI, OpenMP, DPC++, Kokkos, RAJA, HIP
Tools	PAT, gdb, ATP, NVIDIA Nsight, cuda-gdb	PAT, gdb, ATP, Intel Vtune
MPI	HPE Cray MPI, MPICH	HPE Cray MPI, MPICH, Intel MPI
Multi-GPU	1 CPU : 4 GPU	2 CPU : 6 GPU
Data and Learning	DL frameworks, Cray Al stack, Python/Numba, Spark, Containers, Rapids	DL frameworks, Cray Al stack, Python/Numba, Spark, Containers, oneDAL
Math Libraries	cu* from CUDA	oneAPI

Aurora

Argonne's upcoming exascale supercomputer will leverage several technological innovations to support machine learning and data science workloads alongside traditional modeling and simulation runs.

SUSTAINED PERFORMANCE ≥1 Exaflop DP x° ARCHITECTURE-BASED GPU Ponte Vecchio INTEL XEON SCALABLE PROCESSOR Sapphire Rapids

PLATFORM HPE Cray EX

Compute Node

2 Intel Xeon scalable "Sapphire Rapids" processors; 6 X^e arch-based GPUs; Unified Memory Architecture; 8 fabric endpoints; RAMBO

GPU Architecture

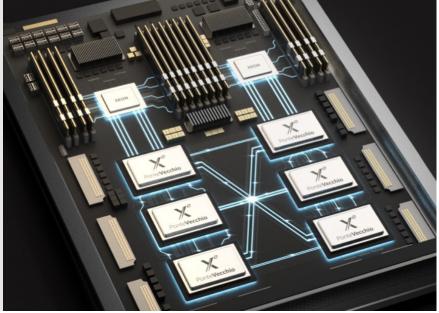
X^e arch-based "Ponte Vecchio" GPU; Tile-based chiplets, HBM stack, Foveros 3D integration, 7nm

CPU-GPU Interconnect CPU-GPU: PCIe GPU-GPU: X^e Link

System Interconnect HPE Slingshot 11; Dragonfly topology with adaptive routing

Network Switch

25.6 Tb/s per switch, from 64–200 Gbs ports (25 GB/s per direction)


High-Performance Storage ≥230 PB, ≥25 TB/s (DAOS)

Programming Models Intel oneAPI, MPI, OpenMP, C/C++, Fortran, SYCL/DPC++

Node Performance >130 TF

System Size >9,000 nodes

ALCF Resources - Aurora

- Platform
 - HPE Cray XE
- Software Stack
 - HPE Cray XE software stack + Intel enhancements + Data and Learning
- Compilers
 - Intel, LLVM, GCC
- Programming Models
 - Intel oneAPI, OpenMP, DPC++/SYCL
- Programming Languages and Models
 - Fortran, C, C++, OpenMP 5.x (Intel, Cray, and possibly LLVM compilers), UPC (Cray), Coarray Fortran (Intel), Data Parallel C++ (Intel and LLVM compilers), Open SHMEM, Python, Numba, MPI, OpenCL

- Programming Tools
 - Open|Speedshop, TAU, HPCToolkit, Score-P, Darshan, Intel Trace Analyser and Collector, Intel Vtune, Advisor, and Inspector, PAPI, GNU gprof
- Debugging and Correctness Tools
 - Stack Trace Analysis Tool, gdb, Cray Abnormal Termination Processing
- Math Libraries
 - Intel MKL, Intel MKL-DNN, ScaLAPACK
- GUI and Viz APIs, I/O Libraries
 - X11, Motif, QT, NetCDF, Parallel, NetCDF, HDF5
- Frameworks
 - TensorFlow, PyTorch, Scikit-learn, Spark Mllib, GraphX, Intel DAAL, Intel MKL-DNN

Preparing researchers for Aurora

ALCF is engaged in several training and outreach activities designed to prepare the HPC community for science in the exascale era.

Public Training

- Aurora Early Adopter Series and Developer Sessions (webinars)
- ALCF Simulation, Data, and Learning Workshop
- ALCF Computational Performance Workshop
- Intel oneAPI Webinars
- ECP Workshops and Webinars
- ALCF-NVIDIA GPU Hackathon

Outreach/Informational Services

- Best Practices for GPU Code Development (article series)
- Let's Talk Exascale Code Development (podcast series w/ ECP)
- Aurora Software Development (articles series on ALCF staff efforts)
- Aurora Early Science Program Project Profiles (article series)
- Exascale-Themed Social Media Activities (Twitter Chat, Instagram Live)
- Argonne Leadership Computing Facility 21

Currently ESP/ECP Focused

- Aurora COE Workshops
- Aurora ESP Hackathons

Join in: https://www.alcf.anl.gov/events

EPISODE 79

Let's Talk Exascale **Code Development:** HACC

Nicholas Frontiere • Steve Rangel Michael Buehlmann • JD Emberson

Argonne National Laboratory

6 / 30 / 2021 ▲... Intel Aurora oneAPI Early & **Adopter** DPC++ Series

Preparing Users for Exascale

Early Science Program

- Ensure the facility's next-generation systems are ready for science on day one – 15 (+5) projects
- Provides research teams with critical pre-production computing time and resources
 - collaboration with ALCF staff and post-doc
 - prepares applications for the architecture and scale of a new supercomputer
 - solidifies libraries and infrastructure for other
 - production applications to run on the system

Exascale Computing Program HI/AD

- Ensure ECP application success (~14 projects)
- Funds ALCF staff to collaborate on readiness for Aurora

2020 Training Activities

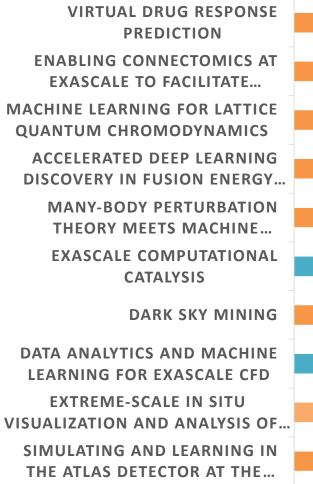
- 8 Workshops
- 12 Webinars
- 5 Hackathons

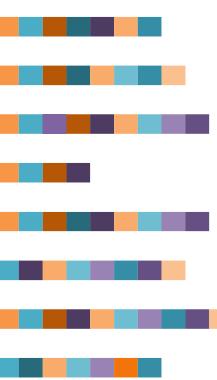
ESP Projects Software Dependencies

PI	Pillar	Compiled Codes	Compiled Languages	Numerical Libraries	Productivity Languages	ML/DL Frameworks	Other Apps/Packages
Benali	Simulation	QMCPACK	C++	MKL, FFTW, BLAS/LAPAC K			HDF5, ADIOS, libXML
Chang	Simulation	XGC	F90	PETSc, PSPLINE, LAPACK			ADIOS, parMETIS
Dunning	Simulation	NWChemEx	C++17				
Heitmann	Simulation	HACC	C++				Thrust (analytics)
Jansen	Simulation	PHASTA	F90, C, C++	PETSc			PUMI, Zoltan, parMETIS
Berzins	Simulation	UINTAH	C++	Hypre			Kokkos
Lele	Simulation	SU2, PadeOps	C++, Fortran	FFTW			HDF5
Christ	Simulation	USQCD codes*	C, C++				
Nakano	Simulation	NAQMD, RMD	F90, C++	FFT, BLAS			
Roux	Simulation	NAMD	C, C++	FFTW/MKL			Charm++

*MILC, CPS, Chroma/Redstar, RBC/Bielefeld

ESP Projects Software Dependencies


PI	Pillar	Compiled Codes	Compiled Languages	Numerical Libraries	Productivity Languages	ML/DL Frameworks	Other Apps/Packages
Bross	Data	NWchemEx	C++17		Python		NumPy, SciPy, Cython, Balsam
Habib	Data	HACC	C++	Thrust, FFTW	Python, R	TensorFlow, Keras, Scikit-Learn, PyTorch, mufnn, LaGP	NumPy, Pandas
Jansen	Data	PHASTA	F90, C, C++	PETSc			
Proudfoot	Data	Athena	С		Python	TensorFlow	CERN ROOT
Randles	Data	HARVEY	C++	SENSEI			
Detmold	Learning	USQCD codes*	C, C++		Python	TensorFlow, Deep Hyper	Balsam
Ferrier	Learning				Python	Tensorflow, Horovod	Tomosaic
Marom	Learning	BerkeleyGW, Quantum Espresso, SISSO	F90	BLAS, LAPACK, ScaLAPACK, FFTW, ELPA	Python	TensorFlow, Pytorch, cuDNN	CUDA
Stevens	Learning				Python	TensorFlow, Keras	CANDLE
Tang	Learning				Python	TensorFlow, Keras	FRNN


*MILC, CPS, Chroma/Redstar, RBC/Bielefeld

AURORA ESP Data and Learning Methods

Data

- Classification
- Regression
- Reinforment learning
- Clustering
- Uncertainty Quantification
- Dimensionality Reduction
- Advanced Workflows
- Advanced Statistics
- Reduced / Surrogate Models
- in situ Viz Analysis
- Image and Signal Processing
- Databases
- Graph Analytics

Early Science Project Metric for Success

- INCITE Readiness is driver for ESP Success on Aurora —Scaling to 20% of Aurora
 - ---Effective use of hardware (use GPUs)
 - -Ready to run science problem within 3 months
- Progress tracked —Staff engagement —Quarterly report
 20 ESP projects driving debug of the hardware, software, and policies for Aurora

ECP APPLICATIONS WITH ALCF HI EFFORT

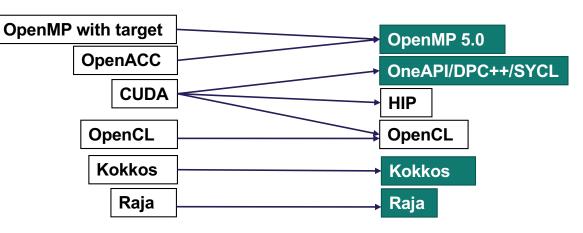
Project	Codes	Languages	Programming Models	Libraries	Staff POC
GAMESS	GAMESS	Fortran, C++	OpenMP, SYCL		Coleen Bertoni, Yuri Alexseev
NWChemEx	NWChemEx	C++	DPC++	BLAS, LAPACK, cuTT, Umpire, Cereal, BLIS	Victor Anisimov, Abhishek Bagusetty
QMCPack	QMCPack	C++	OpenMP	MKL, HDF5, boost	Thomas Applencourt
ExaSMR	NekRS, OpenMC	Fortran, C++	OCCA (OpenMP/SYCL), OpenMP	HYPRE	Kris Rowe, Saumil Patel
CANDLE	CANDLE	Python		TensorFlow, PyTorch	Murali Emani
ExaSky	НАСС, Nyx	C++	OpenCL, OpenMP, SYCL	AMREx	Vitali Morozov, Esteban Rangel
LatticeQCD	Chroma, CPS, MILC	C, C++	DPC++, OpenMP		James Osborn
WDMApp	GENE, GEM, XGC	Fortran, C++	OpenMP, DPC++, Kokkos	PETSc, Cabana, gtensor, EFFIS	Tim Williams
E3SM-MMF	E3SM	Fortran, C++	OpenMP, DPC++	PNETCDF, HDF5	Abhishek Bagusetty
EXAALT	LAMMPS, LATTE, ParSplice	C++, Fortran	OpenMP, Kokkos	MKL, BML, PROGRESS	Yasaman Ghadar, Chris Knight
ExaWind	Nalu-wind, AMR-Wind, OpenFAST	C++, Fortran	Kokkos	Trilinos, HYPRE, HDF5, PNETCDF, YAML-CPP	JaeHyuk Kwack
EQSim	SW4	C++	Raja	EXAIO, UMPIRE, ZPF	Brian Homerding
ExaStar	Flash, Castro, Thornado	Fortran, C++	OpenMP	MKL, HDF5, AMReX	Brice Videau
ExaFEL	spiniFEL	C++, Python		numpy, FINUFFT	Servesh Muralidharan

ECP APPLICATIONS WITH ALCF HI EFFORT

Project	Codes	Languages	Programming Models	Libraries	Staff POC			
GAMESS	GAMESS Fortran, C++		OpenMP, SYCL		Coleen Bertoni, Yuri Alexseev			
NWChemEx	NWChemEx	C++	DPC++	BLAS, LAPACK, cuTT, Umpire, Cereal, BLIS	Victor Anisimov, Abhishek Bagusetty			
QMCPack	QMCPack	C++	OpenMP	MKL, HDF5, boost	Thomas Applencourt			
ExaSMR	NekRS, OpenMC	Fortran, C++	OCCA (OpenMP/SYCL), OpenMP	HYPRE	Kris Rowe, Saumil Patel			
CANDLE	CANDLE	Python		TensorFlow, PyTorch	Murali Emani			
ExaSky	HACC, Nyx	C++ 14 projects on this list, though the list grows and shrinks Adding to the ESP projects preparing Aurora						
LatticeQCD	Chroma, CPS, MILC	c, c		s proparing Aaro				
WDMApp	GENE, GEM, XGC	Fortran, C++	OpenMP, DPC++, Kokkos	PETSc, Cabana, gtensor, EFFIS	Tim Williams			
E3SM-MMF	E3SM	Fortran, C++	OpenMP, DPC++	PNETCDF, HDF5	Abhishek Bagusetty			
EXAALT	LAMMPS, LATTE, ParSplice	C++, Fortran	OpenMP, Kokkos	MKL, BML, PROGRESS	Yasaman Ghadar, Chris Knight			
ExaWind	Nalu-wind, AMR-Wind, OpenFAST	C++, Fortran	Kokkos	Trilinos, HYPRE, HDF5, PNETCDF, YAML-CPP	JaeHyuk Kwack			
EQSim	SW4	C++	Raja	EXAIO, UMPIRE, ZPF	Brian Homerding			
ExaStar	Flash, Castro, Thornado	Fortran, C++	OpenMP	MKL, HDF5, AMReX	Brice Videau			
ExaFEL	spiniFEL	C++, Python		numpy, FINUFFT	Servesh Muralidharan			

ExaSMR

Overview	Activities and Results
 ALCF Catalyst: Kris Rowe, Saumil Patel Overview Simulation of a full small modular reactor (SMR) core Multiphysics solver—coupling neutronics and computational fluid dynamics (CFD) Science problem will require 22 billion degrees of freedom for CFD, 10 billion particles for neutronics Key Components: CFD: NekRS A port of Nek5000 to GPU architectures C/C++, F77, MPI, OCCA framework Neutronics: OpenMC C++, MPI, OpenMP offload 	 OpenMC built by Intel on nightly basis to accelerate A fork of OCCA was created on the ALCF GitHub in order to share the most up-to-date version of the OCCA DPC++ backend ALCF staff successfully ran NekRS test case involving a single reactor core pin to compare the performance of the OCCA DPC++ and OpenCL backends on Intel GPUs. As part of ongoing collaboration with Intel, integration of math libraries – such as oneMKL – with OCCA is being investigated. Recent presentations on the OCCA DPC++ backend: P3HPC forum during the ECP annual meeting (04/14/21) oneAPI Developers Summit at ISC'21 (06/22/21) CEED Annual Meeting (8/3/21) ALCF Aurora Software Development Series https://www.alcf.anl.gov/news/aurora-software-development-bringing-occa-open-source-library-exascale


GAMESS

Overview	Activities and Results
 ALCF Catalyst: Colleen Bertoni Goal is to enable quantum chemistry on extremely large systems of interest in catalysis and energy research. Science challenge is to compute energies/reaction pathways of catalysis reactions in a large silica nanoparticle including solvent. Plan is to use various fragmentation methods in GAMESS ((E)FMO/RI-MP2, (E)FMO/CCSD(T), (E)FMO RI-CR-CC(2,3)). Programming models: Linear algebra libraries CUDA Plans for HIP/DPC++/OpenMP Key physics modules GAMESS Fortran code (fragmentation framework and input reader) MPI/OpenMP threading for CPU with OpenMP offload for part of the RI-MP2 code for GPU GAMESS C/C++ integral libraries (LibAccInt, which contains GPU code for integrals) CUDA code, OpenMP offload port in progress, also considering DPC++ 	 Porting RI-MP2 mini-app to Intel GPUs with OpenMP offload Series of progressive optimizations, including OpenMP threading (V10), porting to MKL (V20), offloading to GPU (V30), restructuring loops (V45), and enabling concurrent CPU+GPU computation (V50) Intel Xeon Skylake Intel Gen9 GT4 Intel Gen9 GT4 Intel Gen9 GT4 V00 V10 V20 V30 V45 V50 Fortran development Updated the Fortran GAMESS code to the latest OpenMP offload from the team and investigating runtime issues Working with Intel team on resolving compiler/runtime issues

Argonne

Portable approaches for Aurora and Exascale

- Aurora's typical production use-cases will combine across simulation, data, and learning
- Porting and optimizing a compiled C/C++/Fortran code is an incomplete paradigm
- Analyze workflow
 - -Does it run on a supercomputer?
 - -Is I/O based on a standard?
 - Consider a standard HDF/MPI-IO/Spark-RDD/SQL/Apache Arrow/.... or port optimally to DAOS
 - -GPU implementations?
 - Consider the architectural impact on application
 - OpenMP might be first

Best Practices so Far – Good Software Practices

- Good software engineering and practices will enable smoother development of scientific applications
- New acceleration(with GPUs) are likely to need refactoring. Could benefit from new algorithms.
- Choose an approach that aligns with how much effort the team has to put into the code
- Identify a portability strategy from the start —CPU: Intel/AMD/Arm
 - -GPU: Intel/AMD/NVIDIA

- High-level portability layers are worth considering (e.g. Kokkos)

 Work with developers of that layer if you can
- If targeting a future GPU, easiest development is on an earlier generation
- Optimization
 - First Focus on functionality, correctness and portability first
 - -Use a physically relevant problem
- Specific optimization approaches and parameters will be made public as we can make them public

ALCF/Aurora moving into Exascale

- In coming year, exascale will be come a reality
- Current best practices might not be shocking, but have proven very important
- An unprecedented level of readiness activity is designed to ensure these systems are productive for wide range of science and engineering problems
- Aurora will be a powerful tool for science an engineering
- Complexity is scientific HPC needs is growing
- ALCF is planning around those needs

Questions

